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Abstract 

The theory of time-dependent X-ray Bragg diffraction by 
crystals is developed on the basis of the Green-function 
(point-source) formalism. A general case of incident 
radiation partially coherent in time and space is con- 
sidered. The time-delay effect of the diffracted radiation 
is described when the ultrashort time duration incident 
pulse strikes the crystal surface. The problem in question 
is closely connected with the effect of time delay in the 
resonance scattering of synchrotron radiation by nuclei 
in a crystal. It is found that, for the case where the 
incident wave is plane (or is an incoherent superposition 
of plane waves) and the time-dependent pulse is a pseudo 
5 function in time, the instantaneous crystal reflectivity 
is a smooth temporal function and tends to the value 
corresponding to the integrated reflectivity calculated by 
means of the conventional dynamical-kinematical X-ray 
diffraction theory. If the incident X-ray pulse profile is a 
pseudo 6 function in both time and space, the temporal 
crystal response has the same functional dependence as 
the spatial distribution of the diffracted intensity under 
the condition of conventional Bragg diffraction of the 
X-ray beam with lateral width < to c, where the time 
delay to is equal to A/27rc and (#oC) -1 in the cases 
of dynamical and kinematical X-ray scattering within a 
crystal, respectively (A is the X-ray extinction length,/Zo 
is the linear absorption coefficient and c is the velocity 
of light in vacuum). 

1. Introduction 

The production of ultrashort X-ray pulse sources by the 
interaction of intense laser pulses with solid targets is 
an important current topic in plasma and X-ray physics 
(Uschmann et al., 1995). From a physical viewpoint, 
it is of great interest to investigate how the Bragg 
reflectivity of a crystal depends on the X-ray-source 
time duration (or, in the case of partial time coherence 
of the incident radiation, the corresponding correlation 
length). This problem is briefly discussed by He & Wark 
(1993) for the case where the input pulse is a 5 function 
in time (the input-pulse time duration is very short in 
comparison with the time parameter to characteristic to 
the diffraction phenomenon) and several examples of the 
time dependence of the output X-ray pulse were given by 
He & Wark (1993) but without any details of calculations 
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of the time-dependent dynamical or kinematical Bragg 
diffraction. 

On the other hand, the problem in question is closely 
connected with the effect of time delay in the resonance 
scattering of synchrotron radiation by nuclei in a crystal. 
The theory of the latter was first elaborated by Kagan, 
Afanasev & Kohn (1978, 1979). After several attempts, 
the successful observation of the decay of resonant nuclei 
following excitation by the short pulse of synchrotron 
radiation was done by van Btirck, Siddons, Hastings, 
Bergmann & Hollatz (1992). 

Thermal neutrons may also be used in place of X-rays 
and offer another opportunity to observe the time-delay 
effect since in this case the value of the characteristic 
time to increases. 

The aim of the present paper is to present the theory 
of the time-dependent X-ray Bragg diffraction by a 
thick (semi-infinite) crystal, expressed in the Green- 
function (point-source) formalism. The time-dependent 
Takagi-Taupin equations allow the general solution of 
this problem to be derived in a form suitable for physical 
analysis, i.e. where the crystal reflectivity is expressed 
as a function of time and the spatial distribution of the 
incident radiation. 

2. Formulation and general solution of the problem 

Within a perfect crystal oriented close to a single Bragg 
position with the diffraction vector h, the X-ray Bloch- 
wave field is given by a coherent superposition of the 
transmitted wave Do(r, t)exp[ikor-i(27r/A)ct] and the 
diffracted wave D h ( r , t ) e x p [ i k h r -  i(27r/A)ct] and is 
govemed by the time-dependent Takagi-Taupin equa- 
tions [cf. equation (2.1) in the paper by Chukhovskii, 
Gabrielyan & Petrashen' (1978)]: 

i(A/ r)%(aDo/aso) + XoDo + x-hCDh 

+ i(A/ r)(ODo/OT) = O, 

i(A/Tr)lThl(ODh/OSo) + XoDh + XhCDo 

+ i(A/Tr)(ODh/OT) = O. 

(1) 

Here, Xo and Xh (X-h) are the zero and h ( - h )  
Fourier components of the electric susceptibility of a 
crystal; ko = k h  = 271-/)~, )~ is the vacuum wavelength; 
70 and 'Th are the direction cosines, % = cos ~Oo ---- 
cos(ko, n),Th = COS((ph) = cos(kh,n) and n is the 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 



F. N. CHUKHOVSKII AND E. FORSTER 669 

inward normal to the entrance surface of a crystal; C 
is the polarization factor, where C = 1 for a-polarized 
radiation and C = cos(2O) for 7r-polarized radiation, 
respectively, v9 is the Bragg angle and the variable 
T = ct is introduced. 

The relationship between the oblique-angled coordi- 
nate system (soOsh) and the Cartesian one (xOz), with 
the x axis along the crystal surface (the z axis is along 
n), is given by 

Z " "  8 0 - -  8 h ~  

x = tan(qOo)So + I tan(Vh)lSh. 

In our case, the boundary conditions are 

(2) 

Do(x,z,T)l~=o = Dinc(x,O,T), 
(3) 

Dh(x,z,T)l~=oo = 0 .  

Here, the amplitude of the X-ray incident wave on the 
entrance surface Dinc takes the general form 

Din¢(x,O,T) = D ( S h ) F ( T -  ~o1%)1~o=~,, (4) 

where the functions D(sh) and F ( T -  sol%) describe 
the space and time dependence of the incident wave 
packet propagating in vacuum assuming k o k h  - -  0. 

For example, the function D(sh) for incident plane 
and spherical waves, respectively, is 

D(sh) = exp[i2~sin(2~)A~ooSh/AIThl], (5) 

D(sh) -- 6(Sh), (6) 

where A~o is the angular deviation from the exact Bragg 
angle and 5(Sh) is a 5 function. 

If, furthermore, the input X-ray pulse is a 5 function 
in time (the pulse duration length is much smaller than 
the characteristic length To = toc of the diffraction 
phenomenon), the F function can be written simply as 

F ( T -  sol%) = 6 ( T -  sol%). (7) 

Here, the phrase 'pulse is a 5 function in time' refers 
to a mathematical model where a monochromatic wave 
train exists for an infinitesimally short time. For this, the 
associated spatial wave distribution D(Sh) adopted can 
be arbitrary. 

In a general case, any F function can be expressed 
as the Fourier integral 

oo 

F ( T -  ,o/%) = (1/2~r) f dw F(w) 
- - 0 0  

× exp(iwSo/% - iwT) (8) 

and by the standard definition the Fourier transform 
F(w) is 

oo  

F(w) = f dT  F(T)exp( iwT) .  

It is clearly seen by performing the Fourier trans- 
formation of (1) over the variable T that this prob- 
lem may be reduced to the solution of the ordinary 
Takagi-Taupin equations. As is well known, this solution 
may be obtained with the Green-function formalism 
(Chukhovskii, 1981). The solution finally obtained for 
the Bragg diffracted wave on the entrance surface is 

oo  

Dh(sh, sh,T)=ixh(c/2AiThl)  f dw exp(- iwT)  
- - 0 0  

(2O 

x f ds'h Gho(Sh -- S'h,W) 
- - 0 0  

× D(s'h)F(w)exp(iws'h/%), (9) 

where the Green function Gho has the form (Chukhov- 
skii, 1981) 

Gho(sh - 4 , ~ , )  = 2 J 1 ( 2 o ( ~  - 4 ) )  2a(~h - s~,) exp[i~(xop,) 

x (1/% + l l l ' r h l ) ( s h  -- S'h) 

+ i~(1/'~0 + 1/l'~hl)(Sh -- 4)]  
x O(sh - s~h). (10) 

Here, Jl(. . .) is the Bessel function of first order; 0(...) is 
the step function; the complex dynamical coefficient is 

a = (Tr/A)(1 + ik); (11) 

A is the X-ray extinction length, A = A(%lThl)l/2x 
[ICIRe~/2(X_hXh)]-I and k is the dynamical absorption 
coefficient, ]k] << 1. 

With (10), the integration over the variable w in (9) 
can be carried out analytically and finally gives 

Dh(Sh, Sh,T) = iXh(Cr/)qThl) f dS'h D(S'h) 
- -  (X) 

x F ( T -  Sh/% -- (Sh - 8~z)/i"Yhl) 
× e al(2a(~_ -_4)) exp[i~(xo/~) 

2 a ( s h -  s~) 
x (1 /% + 1 / l ' r h l ) ( s ~ -  4 ) ]  

X O ( 8 h  - -  8 t h ) .  ( 1 2 )  

The analysis of the problem based on (12) will be 
described in §3. Notice that in the case of kinematical 
Bragg diffraction the basic formula (12) is simplified by 
setting cr = 0 throughout. 

3. Ultrashort input X-ray pulse 

In the case when the X-ray duration length is much 
shorter than the characteristic length of all the other 
terms within the integrand of (12), an input X-ray pulse 
may be approximated as a 5 function in time, i.e. 

F ( T -  ~h/~'o - (s~, - . ~ , ) / l ~h l )  

= 6 ( Y -  ~ h l T o  - (~h - ~,)/l~hl). (13) 
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Hence, one obtains directly 

Dh(Sh,Sh,T) = iXhcTr/AD(sh -- ( T -  ~ / ' r o ) l ~ l )  

× O(T-- Sh/"to) 
X O(Sh -- ( T -  s~l%)l'Y~l) 
× 2 Jl(2a(T - Sh/%)bhl) 

2 a ( T -  ~h/ 'ro)l~l 
x exp[iTr(Xo/A)(1/,,/o + l/l'Yhl) 

x ( T -  8h/"yo)i'yhl ]. (14) 

The temporal dependence of instantaneous crystal 
reflectivity is given by 

s t  =_ (l'rhll'ro)(f dsh IDhl2)/(f dshlDFI 2) 
= 4(17hl/7o)27rr(11%)lxh~l,~l  2 

T'yo 2 

X S Jl(2a(T--sh/'Y°)i'Yhl) I 
2~(T--Sh/%)bhl 

T%l(l+7o/17hl) 
× exp[--2~(im Xo/,X)(1/% + 1/bhl)  

× ( T -  shlTo)lThl]. (15) 

The derivation of (15) assumes for simplicity that the 
wave incident on the crystal surface is plane, i.e. as 
described by (5), and r is the duration length. Notice 
that the lower and upper limits of integration in (15) are 
set by the firfite velocity c of the X-ray pulse propagation 
within a crystal diffractor. 

The formula (15) can be rewritten in a more suitable 
form for practical analysis, i.e. 

s~<= (27r~l% )lXhc~l,~l 2 
7 

× f du 41A(2~u)/2aul 2 
o 

× exp[-2~(tm Xo/,X)(1/% + 1/l'rhl)~], (16) 

where the limit T in the integrand is given by ~ - l  = 
T-1(1/% + 1/l')'hl). 

According to (16), it follows that, in the case of the 
ultrashort input pulse when its duration length is much 
smaller than the characteristic length of the diffraction 
scattering {recall that for the dynamical [kinematical] 
Bragg diffraction it is the extinction [absorption] length 
A / 2 7 r  [#o 1] 1#o -- [27r(Im Xo/A)(1/% + 1/b, hl)]} }, 
the instantaneous crystal response has the shape of the 
saturation phenomenon. Further, if the upper limit of 
a time is such that T-I(1/Ao + 1/I-),hl) << (A/2~r) -~ 
as well, the instantaneous crystal response tends to the 
constant value corresponding to the integrated Bragg 
reflectivity in the conventional dynamical-kinematical 
theory [CDKT, see Pinsker (1978)]. 

In the dynamical diffraction case, the typical behavior 
of I~ is shown in Fig. 1. For this, the saturation time of 

the I~ curve is defined by the extinction length A/2zr. It 
is worth saying that the reflectivity 1~ does not depend 
on the angular deviation Aqoo of the incident plane wave 
and, hence, keeps the same shape after integration over 
the whole angular range 6Aqoo of an input pulse. 

4. Partially coherent incident wave packet 

From (12), the instantaneous amplitude of the diffracted 
wave on the entrance surface is 

O O  

Dh(Sh,Sh,T)=iXh(cTr/JtiThl) f ds~h D(s~h) 
- - 0 0  

x F ( T -  s ~ / %  - (s~ - sl,)/b,,I) 
x Gho(Sh -- S~), (17) 

where the Green function Gho is independent of time 
and is equal to 

Jl (2a(T - Sh/% )lThl) 
G h o ( S h  --  81h) = 2 

2a(T -- Sh/% )bhl 
X exp[i~(Xo/~)(1/% + 1/bhl) 
x (Sh - s ' h ) ] O ( S h  - -  S~h). (18) 

In the general case, the instantaneous intensity distri- 
bution Ih(Sh, sh, T) along the crystal surface is given 
by 

Ih(sh, sh, T) = (Inh(Sh, sh, T)[ 2) 
O 0  o o  

= Ixhc~/~'yhl ~ f d 4  f ds~ 
- -  ( 2 0  - - ( 2 0  

x (D(s~)D*(s'~)) 
x ( F ( T -  Sh/% -- (sh -- S'h)/l"/h[) 
x F * ( T -  Sh/% -- (Sh - 8~)/["yh[) ) 
X G h o ( 8  h --  8 /h)G*ho(Sh  --  8 ~ ) ,  (19) 

where (...) means the average over the statistical ensem- 
ble describing the features of the partial space and time 
coherence of the incident radiation. 

I 0.8 

/~ 0.6 

0.4 

0.2 

0 ,l 8 12 1'6 iO ~rct/A 

Fig. 1. Instantaneous crystal reflectivity [normalized by the value I~ (t  = 
cx~)]. The incident wave is plane in space and a (5 function in time 
[A = 3.151/~,, Bragg angle 74.18 ° and the numerical coefficients 
corresponding to the Si 311 reflection are taken from Usehmann et 
al. (1995)]. 
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As a further example, the case of the incident spherical 
wave (6) is considered. Then, (19) reduces to 

Ih( Sh, Sh, T) - IXhCZr/ A%12Gho(Sh )G*ho(Sh ) 
x ( F ( T -  sh (1 /% + 1/l'rhl)) 
x F * ( T -  8h(1/"Yo + 1/bhl))).  (20) 

In the case under consideration, the intensity of the 
incident radiation is given by 

Io(Sh, Sh,T) = 15(Sh)12(F(T - Sh/Ao)F*(T- Sh/%)). 
(21) 

Comparison of (20) with (21) shows that the intensity 
of the diffracted radiation is defined by the same time 
correlation function but with the single difference that 
there is a shift in the argument owing to the X-ray 
propagation inside a crystal. 

With the Fourier transformation, the statistically av- 
eraged time-dependent functions in (20) and (21) can be 
written as 

( F ( T -  Sh/%)F*(T- Sh/%)) 
= (1/2r)  2 f dw'f  dw" exp[-iw'(T - sh/%)] 

x exp[iw"(T- Sh/%)] 
x P ( w '  - w " ) l F ( ( w '  + w")/2)l 2, (22a) 

( F ( T -  Sh(1/% + 1/bhl))  

x F*(T-  Sh(1/% + 1/l~hl))> 

= (1/27r) 2 f dw' f dw" 
× exp{-iw'[T- 8h(1/"/o -4- 1/1%1)]} 

x exp{iw"[T- Sh(1/"/o -4- 1/b'hl)]} 

x r ( l ~ '  - w"l)lF((w' + w")/2)l 2. (22b) 

In (22), we have introduced the spectral autocorrela- 
tion function F(lw'-w"l), which describes the partial 
coherence phase of incident radiation. 

It is clear that, in the case when the phase correlation 
frequency Wo [Wo = f dw F(w)]  goes to zero, com- 
pletely incoherent in the time incident wave, from (22) 
one obtains the conventional Bragg diffraction solution 
for the incident X-ray spherical wave [cf. (18)]. 

In the opposite case where the phase correlation 
frequency wo tends to infinity (F function assumed to 
be constant), i.e. the case where the incident radiation 
is fully phas e coherent, and if the Fourier components 
F(w) ~_ constant (this is equivalent to the assumption for 
the ultrashort input pulse) the direct calculations using 
(20)-(22) yield 

= I~rhlfdsh lh(Sh, Sh, T) 
70 f dSh Io(Sh, sn,T)lT~O 

= Ixhc~2ASh/;~12('yo)-X('ro + bhl) -1 

4 ]2 Jl(2aT(1/% + 1/l~rhl) -1) 
x 2aT(l~% + 1/l~rhl) -~ 

x exp[-27r(Im Xo/A)T]. (23) 

{The derivation of (23) assumes that the incident-wave 
amplitude along the crystal surface D(sh) depends on 
the coordinate Sh according to a Lorentzian profile of 
width Ash [cf. (6)].} 

It is interesting that now the instantaneous reflectivity 
I~ has the same functional dependence in time as does 
the conventional Bragg diffracted intensity distribution 
along the crystal surface for the incident spherical wave 
(Pinsker, 1978) with corresponding substitution of vari- 
ables. 

Also notice that the above formula (23) describes the 
time delay in the resonance scattering of synchrotron 
radiation by nuclei in a crystal (Kagan, Afanasev & 
Kohn, 1978, 1979) with the substitution of the Fourier 
coefficients Xo, Xh and X-h corresponding to the exci- 
tation of isomeric nuclear levels. 

An example of a calculation using (23) for the same 
numerical parameters as in Fig. 1 (the dynamical Bragg 
diffraction) is shown in Fig. 2. 

1 
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0.4 

0.2 

0.5 1 1.5 2 2.5 3 

(a) 
zrct/A 

0.04 
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0.01 L____ 
4 5 6 7 

(b) 
zrct/A 

Fig. 2. Instantaneous crystal rellectivity [normalized by the va lue /~  (t = 
0)]. The incident wave is a 6 function in space and in time [~ = 
3.151 A, Bragg angle 74.18 ° and the numerical coefficients corre- 
sponding to the Si 311 reflection are taken from Uschmann et al. 
(1995)]. Values of 1~ vs 7rct/A in regions of 7rct/A: (a) between 
0 and 3 and (b) between 3 and 7. Note differences in the scales. 
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5. Concluding remarks 

The theory of time-dependent X-ray Bragg diffraction 
by a crystal is developed allowing for the effects of 
the partial time and space coherence of the incident 
beam. It is found that, for the case where the input 
wave is plane (or is the incoherent superposition of plane 
waves) and the amplitude is a 6 function in time (the 
ultrashort time pulse approximation), the instantaneous 
crystal reflectivity is a smooth temporal function. Fur- 
thermore, in the limit where the observation time t is 
much longer than the characteristic value to [to = A/27rc 
and to = (#oC) -1, respectively, for the dynamical and 
kinematical Bragg diffraction], the crystal reflectivity 
tends to the value for the integrated Bragg reflectivity 
calculated by CDKT. If the input X-ray pulse profile is 
a pseudo 6 function in both time and space, the temporal 
crystal response has a functional dependence identical 
with that of the spatial distribution of the diffracted 
intensity under the conventional Bragg diffraction of the 
X-ray beam with the lateral width toe. 

In the general case, where the input X-ray pulse is 
partially coherent in time and space, calculations of 
practical interest can be carded out with the formulae 
(20)-(22). The important conclusion following from this 
study is that the temporal crystal response is determined 
by the characteristic length when the input duration 
length is much smaller than the latter. So, taking into 
account that for the X-rays the typical values are A/27r 
31.tm and /Zo ~- 60~tm, to ~- 10fs and to ~- 200fs 
for the dynamical and kinematical Bragg diffraction, 
respectively. The last value of to for the kinematical 
Bragg diffraction is comparable with the time duration 

of ultrashort X-ray pulse sources by the interaction of 
intense laser pulses with solid targets (Uschmann et 
al., 1995). The present calculations will have potential 
applications in time-dependent X-ray optics when X-ray 
pulse sources with a comparable time duration come to 
be used in practice. 

Also notice that thermal neutrons may also be used in 
place of X-rays and offer another opportunity to observe 
the time-delay effect since in this case the value of the 
characteristic time is increased. 
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for a preliminary reading of the manuscript and valu- 
able remarks, and Dr S. M. Durbin and Professor R. 
Colella for very fruitful discussions and drawing the 
authors' attention to problems of the time-dependent 
Bragg diffraction of thermal neutrons and synchrotron 
radiation by resonant nuclei in a crystal. 
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Abstract 

In the triclinic case, structures that can be described in 
terms of arrangements of a set number of possible 
subunits occupying the unit cells of an underlying lattice 
may be enumerated by their derivative lattice index n and 
stoichiometry, e.g. XmY(,-m) for two types of subunits. 
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This process involves counting the number, H(n, m), of 
such patterns possible on the frame of the colour lattice 
group, followed by the elimination of any patterns that 
belong to a derivative lattice of lower index. The 
resulting numbers, K(n, m), then have the property 

K(n,m) < (1/n)[,~] < H(n,m) 

where [~] is the binomial coefficient. These expressions 
are equalities if n and m are mutually prime. H(n, m) and 
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